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ABSTRACT

An algorithm is presented for the general (not necessarily
convex or concave) quadratic programming problem over a
livearly constrained set. The algorithm is finitely
convergent and makes use of a convex quadratic programming
method as a subroutine (like the guadratic simplex for instance).
The basic tool for this method is a facial decomposition for

polyhedral sets.




Section 1) Introductory Remarks

The term quadratic programming has now become classical both in

management and engineering sciences; it refers to the optiwmization of a
quadratic objective function over a polyhedral set P in the n-dimensional ;

vector space . Usually, however, all that is meant is convex quadratic

programming, i.e. solving problems of either type:
a) minimize £(x) , subject to x € P (la)
or b) maximize g(x) , subject to x ¢ P (1b)

where { 1is a convex function ,

g a concave function ,
and P a polyhedral set defined by say A x < b with A an m

by n matrix.
Convex quadratic programs are indeed very important because they appear
in practical applications and also because they represent a useful
approximation of more general convex programs,

There are other cases of linearly constrained quadratic programs,
however, (which also correspond to practical problem:s) namely the opposite

r

of (1) cal'ed here concave programming (quadratic) problems, i.e.

a) maximize f(x) , subject to x ¢ P (2a)
or b) winimize g(x) , subject to x € P (2b)

A third class of quadratic program is the general one /as it contains
both the convex and concave cases), where one seeks the optimum (maximum

and/or minimum) of a general quadratic function f(x) (not necessarily

convex or concave) over the polyhedral set P .




This paper focuses on this general case, presenting an algorithmic
principle based on some simple fundamental properties of I, several
versions of such algorithms are being tested in order to find appropri-
ate measures of efficiency for algorithms of this type,.

Probably because it does not possess the many useful properties of

its convex special case, relatively little attention has been devoted to

b e o

]
Footnote the general case in the literature.= With no attempt to pres ..c¢ a complete
bibliography of the subject, let us menticn the articles [ 9 , 10 |}

by Ritter who is apparently the first to have studied the non-convex

case, followed by Cottle and Mylander [5] and more recently Konno [7]. All

) 2
Footnote of these papets—/ are centered around the concept of cutting planes and (7]

presents an interesting study of several types of cutting planes applicable to
non-convex quadratic programming, including the cuts introduced by Hoang
Tei in [i1] for general concave programming and which have recently
received much attention in integer programming { 1,3,6,8 .

Qur approach proceeds along different lines, however, as it is funda-
mentally oriented towards an enumerative decomposition into subproblems

3/
Footnote of the crigiral problem.= It makes use of the so-called facial decomposi-

tion of the polynedral set P , which leads to the construction of an

arborescence 4oy which one may search for the pglobal optimum; much as

for the branch and bound algorithms, the arborescence is used here to

isolate "candidates" (usually local optima) for the optimum which then
can be enumerated to identify the over-all best soluticon(s), i.e. the
global optimum(s).

In seccion 2 we list some useful properties of the linearly constrained
general quadratic programming problems. Section 3 then contains &« brief
sumnary of the facial decompositiou procedure { ;4 ] and section & outlines

snme relevart mathematical develoarnmants.

M_____w B




Section 2) The structure of quadratic programs !

Footnote

M .

We present below a list of the properties which lie at the crux of
the problem under consideration; all are straightforward observations
and do not require much mathematical insight. For simplicity we only con-
sider a bounded n-dimensional polyhedron P as feasible region and the

general quadratic problem (GQP) is defined by:

minimize £(x) , subject to x € P

where £ is a quadratic function.

Ccall S the set of all optimal solutions x of GQP .

Theorem 1: If S & rel int (P} then f 1is strictly convex (i.e.,
positive definite) on Aff(P) and S consists of a

unique point X .

/

Corollary 1.1:s If f is not strictly convex on P then [ attains

its global minimum on the relative boundary of P .,
Theorem 2: The relative boundary of an n-dimensional polyhedron P
is the union of its (n-l)~dimensional (closed) facets.
Theorem 3: If f is convex (concave) on P then it is convex (con-
cave) on all the facets, and lower-dimensional faces F
of P .

Corollary 3.1: Since all faces of P are polyhedral, theorem 3 also

holds for any face of P.
Theorem &: 1f x e P then x is either a vertex of P or x
belorgs to the relative interior of some face of P

(including P 1itself).
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Corollary 4.1: Any optimal solution x of GQP satisfies theorem 4.
Theorem 5: Let F2 c F1 C P be faces of P , and let x ¢ I-‘1 be

optimal, i.e.

E(x) < £C) , ¥xeF .

1f x ¢ rel int (Fl)

then f(x) < f(x) , ¥ x ¢ F,

Theorem 6: If f 1is concave on a face F < P then there exists a

vertex x of F such that
f(§) < f(x) , ¥xeF

Proofs: To l: Along any l-dimensional line, the quadratic function f
is either strictly concave, strictly convex or linear.
Hence, for every point Xx €S and along ary line L(%)
through - , f must be convex or linear since
f(ﬁ) < f(x) , ¥xe L(g) 5y but suppose that £ is
a linear function along e;ery line L(§) through <5

then on the relative boundary of P, there must exist

R

a minimal point x € (L(X) N S), and we have a contradic- |
tion to the hypothesis; hence, £ 1is strictly convex;
furthermore, a strictly convex function attains a unique
~minimum x on any open set U(S) S for instanca U = rel int(P);
hence, S = {;}. Q.E.D,

To 1.1: By contraposition of theorem 1,

To 2: This is a classical result and the proof is omitted.

To 3: Immediate since FC P




To_4&: This is a classical result, too. The polyhedron P can
be decomposed into disjoint subsets P, = rel int (Fv)
where Fv runs over all faces of P (including P
itself);furthermore, since the relative interior of a

point is ill-defined, one has
P =Lv)‘%" {Fu]

wherse Fp are the vertices of P and FL the k-
dimensional faces of P, (1 <k <n) .

To 4.1: Immediate since x € P .

To 5: Immediate since F. F but F2<¢ rel int (Fl) .
To 6: Proof omitted.

The above properties of GQP 1lead in a straightforward manner to the
algorithmic principle presented at the end of section 2,

In theorem 4 (its proof and corollary) one finds the germ of a con-

struction described below in greater detail,




Section 3) The faces of a polyhedral set P .

Consider the system
Ax = b (3a)
x>0 (3b)
with A an m by n + m matrix of rank m,

and set

M={1,2,...,n,n+l,...,04m} ;

A subset IS M is called minimal if

{x,'xi 20, ¥i e I}C {x|x; >0, ¥i € ¥} = P

and for every ios I, there exists a point X such. that
?(io< 0, while x, 20, vie 1~ {i]}.
Geometrically, it may be seen that the minimal set I consists of the
indices i € I for which the affine set {x]xi = 0, i ¢ 1} contains
at least one facet of the polyhedral set P defined by (3). Let
Io be the minimal set of P.
Note that a minimal set Io can be found by solving iteratively
the following L.P. starting with I = M:
minimize X, s subject to xi'z 0 ,Viel-~ {io] (3¢)
: Ax = b

If the minimal value x; is < 0 then keep io in the set I; otherwise, if
(o]

%io> 0, then reduce the set I by eliminating its element io.

It is shown in [4] that after all elements io ¢ M have been considered

in (3¢), the remaining set 1 = I0 is minimal.

Now the facial decomposgition of an nedimensional polvhedron P

simply consist in determing the mipimal index set I = I(il) corresponding

to each (n=1)-dimensional facet F(il) = {x ¢ Plx1 = 0, ilc Io], the
1

set. I = I(il,iz) for each (n-2)=-dimensional face
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]

F(il,iz) ={xeFlpce | xi1 x12 =0, 1i,¢ 1(11)c 10} ,

etc,...; each index set I(il,...,iq) characterizes a face F(il,...,iq)

]
=y

3 i = { < == = =
F(ll,...lq) 1 x € P ] X ves =X, o, Ax

1 lq '

= i

X, 20, Vield

1.'!- q-l ‘:

which lies in the subspace Aff(F(il,...,iq)) defined by

and, of course, one has

FA)DDF 1) Deve DEGpeni)

) ey
LD 1) D e DI i)

and Aff(”ile Aff("‘(ilsiz)>3 DAff(\F(i,,...,fq))_

The complete facial decomposition of P therefore assumes a tree-
like structure beginning with a single node which corresponcs to the largest
face P (which contains all the other faces); from this node, one has
branches (as many as there are elements in Io), each one leading to a
facet F(!) , i ¢ Io ¢ then, on the third level, one finds the (n=2)-
dimensional faces of P , i.e, the facets of F(i), i ¢ Io ; from each
F(il)’ ile Io one therefore has branches going to the faces F(il’iZ)
with 12s I(il) & Io ; and so on...the lowest level containing all the
O-dimensional faces (vertices) of P .

Note that this tree-structure is redundant because F(il""iq)

corresponde to one and the same face for all permutations of the indices




il,...,iq. Tn order to avoid this type of redundancy, it suffices

to generate the index sets {il,...,iq} in a strictly increasing lexico-~
graphic order. A more detailed description of the facial decomposition
method can be found in {4]. In particular, a method is given for

eliminating,inr the facial arborescence, another kind of redundancy

due to degpemeracy. Ultimately, the nodes of the arborescence will

be in one~to-one correspondence with the faces of P.

Algorithmic principle: The face decomposition of P furnishes, in quite

a natural way, an enumerative method to solve
linearly constrained quadratic problems. Consider a face F of P
generated at some level of the face decomposition:
A) 1f £ is convex on F , then we know that it is convex on
every face and subface of F (Theorem 3). We may therefore solve the

convex quadratic problem:

minimize £(x) , subject to x e F ;

then store the optimal solucion x(F) , remenmbering that

it is a cuandidate for the global optimum of the original

problem: minimize f£(x) , subject to x ¢ P .,

furthermore, since Q(F) is the optimum on F , there is
no need to investigate the ifaces and subfaces of F (Theorem 3)

individually: thus the branch can be terminated at F .

B) 1f f 1is concave on F , then we know that the optimum

of the concave quadratic problem:

minimize f(x), subject to x & F

is attained on (at least) one vertex of F (Theorem 5); one therefore

may proceec with the race decompositiono! F, without
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checking the concavity of { on each face and subface

of F , until the lowest level (the vertices) is reached.
The determination of the optimal vertex §(F) can be made
by (explicit or implicit) search in this set of vertices:
again, Q(F) is stored as a candidate for the global
optimum of the original problem. Note that one may also
use here any other concave quadratic programming algorithm,

such as the ones studied in {2] and {7] for ianstance.

C) The third remaining case is that where f is neither

concave nor convex on F ; here one simply proceeds with the

facial decomposition of F , generating new faces which

must be tested for coanvex- or concavity.

Termination: It is easily seen that an algorithm based on A), B), and

C) will terminate in a finite number cf steps; indeed the

face decomposition generates a finite number of polyhedral sets (faces).
Thus the only point which could lead to an infinite sequence of numerical
operations is A); however, algorithms for convex quadracic problems on

a polyhedral set F (like the quadratic simplex algorithm) are con-

vergent in a finite number of steps.

Finally, one compares all the candidates x(F) obtained at the

termination of all branches and selects the 'best' one(s) as the global

optimum(s).




-10-

Concluding Remarks:

The above algorithmic principle is not exempt of difficulties inher-

ent to the nature itself of the general quadratic problem over a polyhedral

set P :

1) It may happen that f is "essentially concave” on P , that
is, that there are only relatively few faces F of dimension
greater tl.an zero (i.e., other than vertices) where f 1is con-
vex, In this case, the efificiency of the algorithm is limited
by the same phenomenon as for the concave problems, namely the
large number of faces and especially vertices of P (this
number grows exponentially with the dimension of P , in
general). In order to avoid the explicit enumeration of all
the vertices of P , one has to use lower bound (for a mini-
mization problem) estimates in order to truncate branches
which are obviously suboptimal; this approach corresponds to
the classical branch and bound method. 1Its efficiency
critically depends on the ability of the bound
estimates to truncate relatively high -dimensional faces,
wiiic requiring only a non-prohibitively large amount of com-
putations to obtain the bounding value. The developments here
are highly heuristic and problem-dependent and therefore,

outside the scope of thic paper.

2) Another disagreeable phenomenon is due to degeneracy in the

polyhedral set P . 1Indeed it may happen that the face

decomposition is geometrically redundant, while its
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~1]~

algebraic charac :rization by index sets {i ,...,iq} is not.

1
To clarify this point, let us simply mention that two faces

F1 and F? with non~idz2atical inde» sets, i.e.

Fl(il,---,iq) »o Fylipseesi

. - h) x iz .
with {11,...,1q3 \,1;..~,Jr}

may be identical,from a practical point of view,in that their

point sets are the same, i.c.

{% | x eF l={x{ xer.}1

Degeneracy can be observed in the construction of the minimal
sets 1 , however, and may theretore be eliminzted from the

tree-structure by aporopriate bookkeeping. Since this is not
immediately pertinent to the quadratic programming aspect but
rather stems intrinsically from the face decompesition of P, the

interested reader is referred +o [4 ] for further details.

For the case where the dimension of P iz not prohibitively

large (say less than 50 to 100) and where the non-convexity

of £ 1is not dominan:, i.e, whera f is convex on all (but
a few) low-dimensioaal faces, the present approach seems prom-
ising particularly in view of the . herent difficulty of this
type of problem. In any case, it is not difficult to find
problems wheve the approach jvesented here is clearly superior

to cucting plane techniques, simply because it does not entail

the convergence obstacles introduced by the lagter.
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4) Relation to other work.,
A similar approach to the facial decomposition has been sketched by
Murty in [13]. He shows that the optimal sclution can be found in a finite

list of optimal solutions to convex quadratic subprcblems. The list of sub-

problems is obtained from a full combiunatorial arborescence of arfine sets,

defined by

where 0<Lk<n ;

Finiteness of the procedure follows because:

k n+m

a) ‘There are at most A = C < 2 distinct affine sets in

the arborescence;
b) Only the reduced problems which are of the convex quadratic
type need be solved{in finitely many steps).
In Murty's procedure m =mw + (n - k) new subproblems are generated in the

arborescence for every affine set S(nl, ml) of dimension = (n -~ k)

!
with properties
(ii) S(nl, ml) intersects the feasible set,
(iii) The objective function f is not convex on S(nl, ml)
(Note that if no additional bookkeeping organization is implemented this

procedure generates the same affine set k! times, corresponding to the per-

mutations of il""’ik)

The facial decomposition algorithm presented in section 4 generates distinct

subproblems and their enumeration is curtailed accurding to the remarks below
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1) Only faces of the feasible set P , i.e. only those affine sets

S(nl,ml) which are known a priori to intersect P , are

generated.

2) Because the convexity tests indicate that f 1is either convex,

or concave or neither convex nor concave on the particular

face S under consideration, there is no extra cost for using
this intormation (when the function to be minimized (maximized)
on S tuyrns Out to be concave (convex)). Indeed, when f is

e e

concave on S , we know a priori that the vertices of S can

be generated directly with no additicnal convexity test (see

part B) of the algorithmic principle and STEP 4 B of the algo-
rithm).

Finally let us note that, in general, the above remarks 1) and 2) may

be expected to generate, for the amount of computations of the facial decomposi-
tion method, & reduction which grows exponentially with the dimension n of

the problem as compared tc the approach of [13].




P mme =

~14-

4) Computational aspects.

Consider the set of linear constraints

where X 2o

A is an m by O matrix

4

X an n-vector (xl,...,xn)

b

b an m-vector (bn+1""’ n+m)

As customary in linear programming, let us introduce slack variables

*k
n
X, =b =~ T a’ X, »y k=ntl,...,mm
k k j=1 ki J ?

Systewm (3) then becomes

Ax = b (4a)

X

iV
o

(6b)

L

with A = (A", Im) where 1 is a mbym unit matrix,

i

and p. 4 (xl""'xn’xn-l'l’""xlﬂ‘m) .

Furthermore, take the objective function £(x) to be defined by

£(x”) = x"Tex” + px” + £° (5)
where C isa n by n symmetric matrix

D an n-vector
£° a scalar.
(This is the general form for a quadratic function in n variables

x” o)




Substituting into a quadratic focm:

A face FJ of P characterizes a set of variables
xj, j ¢ J which are kept at value zero
x; =0 ¥ie J< {1,2,...,0,0+1,...,n+n} = M (6)

and we need represent the quadratic function £ in the affine space Afi(FJ)

defined by (6). Consider a basis B for the system (4), where the set

J 1is contained in the non-basic set. The general solution to (4a) can

be described by

x, =B

B

where B is a set of ™

1 1

b - B Nx N

linearly independent colums of A , forming a

non-singular m by m matrix (basis);

and N contains the remaining columns of A ; the variables Xy are

called "bagic'" and ® "non=-basic."

A general point in the affine space Aff (F;) defined by (6) then

reads

o
i

where the matrix NJ is

columns corresponding to

1 1

B"b-B NJ XN (8a)
J

arbitrary (8b)

o (8¢)

obtained from the submatrix N by deleting the

jed.

Let us substitute (8) into (5) in order to obtain the expression for

the function f , restricted to a smaller domain of definition, namely

Aff (FJ) .

_. i _ ) "’*M.
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- . . .’
Since only the original variables x = (xl,x?,...,xn) are present

in the argument of the function f , we only need substitute for the

’ * v ] -
variables x, , j € {1,2,...,n] and basic, i.e.

J

I

B

i

(E-l)'b - (B-l);N] XN (9)
‘ J

d

]

3b - BNT Xy o where 8 denotes the matrix (B_l)
- J

; : -1 .
obtained from (B ) by deleting the rows corresponding to basic variables x

je {n+1,...,n+m} .

Let us now substitute (9) into (5), yielding

m

t
JON

£ = iBb - BN %
- J

For o
C i Pb BNJ“NJJ +

[, o 0
+ o Bb - BNJ“NJJ toPo=

= ¢t° + bglceb + ppby  +
TT.o. . _ T T.T,.
+ (-DBNx, - b'BCBN x. - xg N B CBb)
J J J

T T
+ Xy N BUCBN

J J
SR N . . ¢©
Ty NN T Uy (10a)

J J J

where
"

Cj =" C B , which is (again) a symmetric matrix (10b)
D = (DB +2 b C)
J J (10¢)
=2 %ph+blCob 10d
3 3 3 (10d)

e
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Thus, one obtains for f, restricted to Aff (FJ), a function

fJ(xN ) which is again a (general) quadratic function.
J

Testing the convexity of a quadratic form,

It was indicated in section 3 that one of the major ingredients of
the algorithmic principle developed there is the test for convexity (and
concavity) of the given quadratic objective function on a subset F_ of
its domain of definition. To be precise, we must repeatedly explore the
definiteness of fJ(x) , for x e %}CZ P , i.e. on a face FJ of P .

According to the above result (10), this task can be seen to consist

in finding the definiteness of the quadratic form in the (n-J) variables
)(NJ

f =f. 4+ D,/ N + T NT C. N (10
g ) = Ey Dy Ny oy Ny G5 Ny 10)
J o J J J

One has:
f£_is convex if the symmetric matrix Nf CI N

J
(semi-) definite;

3 is positive
hence, it is sufficient to investigate the definiteness of the symmetric

matrix

~ T T
C =N 8" CBN, (10a)

There are many theoretical and practical approaches, concievable at this
point and we present but one method below, chosen because it seems

adequate:




r~ ~T (11}
where C 48 a symmetric k by Kk matrix; setting

y=C%x, or ¥y = z cijxj » 1=1,2,..., k (12)

g(X) becomes the scalar product Xy of the k-vectors x and y :

x. ¥

= 3737

g(x) =xy =

i1 ®

~

Now, by pivoting in a non-zero diagonal element of C (say ¢ one

11)
can express a variable Aij (here ?{1) in terms of the (K-1) remaining
¥ variables and one y variable (here yl) ; this operation is known

8s a gaussian exchange(principal pivoting)in the linear system (12).

More concretely, one has after the gaussian exchange with pivot

~  (*0)
‘11
k kK <
-~ -_l_ 4 -~ i - :L - l' ~
- %, = ~ (\ Y, + 5;2 cljxj) = i + j; ~:—1 xj (13a)
11 11 11
an or = 2,..4ky, = X C,. K, = .. X, = === |-y c,.X, !
1 j=2 1373 i1™M j=2 i) 3 1 j=2 173/




-19=~

Let us now replace ;1 and s by their respective expressions
(13) in 8(;") ’

=X YT XY= v 2 :}i xj)yf" T x 'il'yr" T ( js il * )%
== 11 ey 82 ey ¥ ST

n A
oy =3 s o, \3sT T~/ % %y
11 3=2 ey §=2 ¢4y i=2 °11
x
1 2 - ~ o~
— -+ ;: c ®£ %

l

since clj ==‘c81 for =3 by symmetry of C .

Furthermore. by construction, the wmatrix c is again symmetric:

~ A ~ ~
S =% . Saafg =T J i - (15)
s “is ry 8 rY s]

11 i1

Now since yi >0 , one has the necessary condition:

g positive definite = ?il

>0,
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and similarly

g negative definite = E&l <0 .,

The test for strict convexity of the given ggenetal) quadratic func-~

tion f , on a restricted domain of definjtion (Aff E&) can be made as

follows:

Step 1: Check that all elements i of CJ in the diagonal are
pasitive; if this is not the case then g is noi strictly
convex; stop

Step 2: Pivot on <1 and generate the new symmetric matrix C; ; note
that the number of rows and columns of C 1is one less than

for ; g0 to Step 1.

C
J
In at most (n=-J) iterations this procedure shows that CJ is positive

definite or not.

Remarks: Since the gaussian elimination is always applied to a symmetric
matrix, ylelding a new matrix which is again symmetric, explicit
computations need only be carried in the upper triaagular part
of C ; this represents a substantial reductior in the number
of necessary operations, 1n fact principal pivoting is
a standard manipulation in mathemat ‘cal programming, which

can be done efficiently.

Note that in Step 2, the choice of €11 was arbitrary; in fact

an efficient algorithm will try to exhibit non-convexity as soon

as possible; thus one will choose the index i of the principal

pivot Ciq 0 with greater care,




|
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Qutline of the algorithm:

We may now summarize the various results obtained in the previous
gsections into an algorithm to solve general quadratic, linearly con-
strained problems. The algorithm described below is but one version of
the principle presented at the end of section 3. Since numerical compu-
tations are still at an experimental stage, it is difficult to assess
the computational efficiency of one version with respect to another,
especially when the differences stem from programming details rather than
basically di fferent approeches. The algorithm below was chosen because
of its relative simplicity of exposition combined with a rchust numerical
performance,

The algorithm requires the following quantities:

two (n+l)-arrays : m , m [0:n] and (n+l) “dynamic' arrays (at most

(n+m) dimensional) : If{o; ] , I[l; 1 ,eee,In; | .

The result is found in the (ntm)-array XOPT with the optimal value
for £ denoted by OPT .
STEP 0:
Let t : iteration index (level in the arborescence)

m : pointer

I : minimal index set

m : number of elements in I

OPT: currentoptimal value for f over P .

jnitialization: ¢t : =1 ; mwf0] : =1 ; 1{0;) : = 1° = minimal set of P;

m [0} = number of elements in I 0PT = + ® (minimization)

- ... 4



S1EP 1:

Test the definiteness of £ on the affine set: AEf(Fc-l) :
: r -
AL (Ft-l) = {x[ xj =0, for all 3} = ‘[LO;m[O]J,...,I[t-l;m[t-l]_}

iIf £ is convex then go to STEP 4a ;

I1f £ is concave then go to STIEP 4)b ;

STEP 2:

Find the minimal indexseet I{t; ] of the polyhedral set Ft-l

r A,I) x =b
. x 20
el 4 _ _
xg = 0, for all ='1L0;m[0]J,...

...,1{:-1;»[:-11]

Denota Ly nI[t] the number of elements in Ift; ] ;

’

STEY 3:

Let mft] . =1 H
t :=t4+1;

g0 to STEP 1 H

STEP 4a:

Solve the .onvex quadratic problem:

minimize f(x) , subject to x ¢ Ft-l

(using one of the quadratic siwplex algorithms, for instance).

go to SIEP 5
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STEP 4b:

Solve the concave quadratic problem

minimize f£f(x) , subject to x ¢ Ft-l

(This can be done by determination of the vertices of Ft-l ,for
instance; these vertices are obtained by iteratively computing STEP 2

and STEP 3, bypassing STEP 1, until ¢t = n where the O-dimensional faces
are generated [4]1).

STEP 5:

Denote by f and x the optimal solution obtained in STEP 4,

1f £ < OPT then set x r =X

OPT
CPT : =f

STEP 6:

If mft-1} < mI[t-ll then

set m{t-1} : = m[t-1] + 1 and go to STIEP 1,
Otherwise
set t : = t-l ;

if t >0 then go to STEP 5

if t =0 then : the global optimum is ZopT °* with value QPT .

The algorithm can be seen to contain the following components:

Branch-identification phase (STEP 2) : Given a (n-t)-dimensional face

Ft-l of the n-dimensional polyhedron P , the minimal set

I[t; ] is constructed, which identifies all the (n~-t-1)~

dimensional facets of Ft-

1"




Convexity test phuase (STEP' 1) : Given a subspace Aff (Fr-l) one calculadw,

the restricted functiou ft~1 » and, by principal pivoting,

finds out if ft 1 is convex, concave or neither.

Convex (or concave) programming pnase (STEP 4) : Knowing that the pro-

gramming subproblem

minimize ft-l(x) , subject to x ¢ Ft-l

is either convex ov concave, one finds the optimal solutio:.(s),

by applying the respective algorithm.

Ordering and choice routines : Each array 1I[t; ] is constructed and

arranged in 3narbitrarv but fixed way and the chojce in STEP 6
amounts to a well-defined but arbitrary order in which the
faces of P are generated and examived.

In fact, the arborescence constructed by the algorithm
is guided by the following two rules:

Forward choice rul. (STEP 3): Given a (n-t)-dimensional

affine space Aif (Ft_l) for which the convexity
tecst has indicated that ft_1 is neither convex nor
concave, STEP 3 chooses one (the "first" one)
(n-t-1)~dimensional affine space whick is a subspace
of Aff (Ft-l) ; clearly, because of the arbitrary
order in I{t; ] , this choice is well-determined

but arbitrary.

Backtrack-choice rule (STEP 6): Given a (n~t)-dimensional

affine space Aff (Ft-l) where the function £ (i.e. (£

t-l)




is cither cunve: or concave, Wwe Lnow that the curre ¢
branch can be toroanated because the opiimad: solution core

respeading te fhat arfiione space is fooad in STEP 4; here

STEP 6 chonses the nesit gollateral in~i&j-dimansional

affine snace, :nercasing the pointer mit~l] by one;

if there is no such set {(i.e. mit- L] = mIlt~1]) » STEP

6 backtracks to the nrevinus level, reducing t by one,
and chooses the next collateral (n-t-]l)-dimensional affine
space, Here again, the sequence in which affine spaces
are chosen is determined by the order within the

index sets Ift-1; ] and 1Ift-2; | , and it is therefore

well-defined but arbitrary.

The reader familiar with branch and bound procedures will recognize
here the immediate possibility (or evertual impcovemencs of the overall
efficiency by making use of a more elaboracz choice vule whichk selects
every element of the index sets {it, ] easciiy once but in a certain

order of preference detined by addivicral computations. To be efficient

this technique must be combincd with the bound estimates mentioned in

gection 3 and no efforv is made to 5o inco the art involved by such an

approach.
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